Box 9E. 1 Continued FIGURE 2. The C-S-R triangle model (Grime 1979). The strategies at the three corners are C, competiti- winning species; S, stress-tolerating s- cies; R,ruderalspecies. Particular species can engage in any mixture of these three primary strategies, and the m- ture is described by their position within the triangle. comment briefly on some other dimensions that Grime’s (1977) triangle (Fig. 2) (see also Sects. 6. 1 are not yet so well understood. and 6. 3 of Chapter 7 on growth and allocation) is a two-dimensional scheme. A C–S axis (Com- tition-winning species to Stress-tolerating spe- Leaf Economics Spectrum cies) reflects adaptation to favorable vs. unfavorable sites for plant growth, and an R- Five traits that are coordinated across species are axis (Ruderal species) reflects adaptation to leaf mass per area (LMA), leaf life-span, leaf N disturbance. concentration, and potential photosynthesis and dark respiration on a mass basis. In the five-trait Trait-Dimensions space,79%ofallvariation worldwideliesalonga single main axis (Fig. 33 of Chapter 2A on photo- A recent trend in plant strategy thinking has synthesis; Wright et al. 2004). Species with low been trait-dimensions, that is, spectra of varia- LMA tend to have short leaf life-spans, high leaf tion with respect to measurable traits. Compared nutrient concentrations, and high potential rates of mass-based photosynthesis. These species with category schemes, such as Raunkiaer’s, trait occur at the ”quick-return” end of the leaf e- dimensions have the merit of capturing cont- nomics spectrum.
Plant Physiological Ecology
$102.61
This book offers a detailed scientific study of plant physiology and ecology, covering concepts like plant strategies and leaf economics.
Additional information
Weight | 1.497 lbs |
---|---|
Dimensions | 17.8 × 3.2 × 26 in |
Plant Physiological Ecology
$31.57
This textbook supports advanced biology education by exploring the physiological and molecular interactions of plants with their environments.
The growth, reproduction and geographical distribution of plants are profoundly influenced by their physiological ecology: the interaction with the surrounding physical, chemical and biological environments. This textbook is notable in emphasizing that the mechanisms underlying plant physiological ecology can be found at the levels of biochemistry, biophysics, molecular biology and whole-plant physiology. At the same time, the integrative power of physiological ecology is well-suited to assess the costs, benefits and consequences of modifying plants for human needs, and to evaluate the role of plants in ecosystems. Plant Physiological Ecology begins with the primary processes of carbon metabolism and transport, plant-water relations, and energy balance. After considering individual leaves and whole plants, these physiological processes are then scaled up to the level of the canopy. Subsequent chapters discuss mineral nutrition and the ways in which plants cope with nutrient-deficient or toxic soils. The book then looks at patterns of growth and allocation, life-history traits, and interactions between plants and other organisms. Later chapters deal with traits that affect decomposition of plant material and with plant physiological ecology at the level of ecosystems and global environmental processes. Plant Physiological Ecology features numerous boxed entries that provide extended discussions of selected issues, a glossary, and numerous references to the primary and review literature. The significant new text is suitable for use in plant ecology courses, as well as classes ranging from plant physiology to plant molecular biology.
Additional information
Weight | 1.22 lbs |
---|---|
Dimensions | 17.8 × 2.5 × 26 in |
Reviews
There are no reviews yet.
Reviews
There are no reviews yet.